
Criteria for Choosing Microcontroller 

While choosing a microcontroller, make sure it meets the task at hand and that it is cost 

effective. We must see whether an 8-bit, 16-bit or 32-bit microcontroller can best handle the 

computing needs of a task. In addition, the following points should be kept in mind while 

choosing a microcontroller − 

Speed − What is the highest speed the microcontroller can support? 

Packaging − Is it 40-pin DIP (Dual-inline-package) or QFP (Quad flat package)? This is 

important in terms of space, assembling, and prototyping the end-product. 

Power Consumption − This is an important criterion for battery-powered products. 

Amount of RAM and ROM on the chip. 

Count of I/O pins and Timers on the chip. 

Cost per Unit − This is important in terms of final cost of the product in which the 

microcontroller is to be used. 

Further, make sure you have tools such as compilers, debuggers, and assemblers, available 

with the microcontroller. The most important of all, you should purchase a microcontroller 

from a reliable source. 

Embedded Systems - 8051 Microcontroller 

Brief History of 8051 

The first microprocessor 4004 was invented by Intel 

Corporation. 8085 and 8086 microprocessors were also invented by Intel. In 1981, Intel 

introduced an 8-bit microcontroller called the 8051. It was referred as system on a chip 

because it had 128 bytes of RAM, 4K byte of on-chip ROM, two timers, one serial port, and 

4 ports (8-bit wide), all on a single chip. When it became widely popular, Intel allowed other 

manufacturers to make and market different flavors of 8051 with its code compatible with 

8051. It means that if you write your program for one flavor of 8051, it will run on other 

flavours too, regardless of the manufacturer. This has led to several versions with different 

speeds and amounts of on-chip RAM. 

8051 Flavours / Members 

8052 microcontroller − 8052 has all the standard features of the 8051 microcontroller as well 

as an extra 128 bytes of RAM and an extra timer. It also has 8K bytes of on-chip program 

ROM instead of 4K bytes. 

8031 microcontroller − It is another member of the 8051 family. This chip is often referred to 

as a ROM-less 8051, since it has 0K byte of on-chip ROM. You must add external ROM to it 

in order to use it, which contains the program to be fetched and executed. This program can 

be as large as 64K bytes. But in the process of adding external ROM to the 8031, it lost 2 

ports out of 4 ports. To solve this problem, we can add an external I/O to the 8031 

Comparison between 8051 Family Members 

The following table compares the features available in 8051, 8052, and 8031. 

Feature 8051 8052 8031 

ROM(bytes) 4K 8K 0K 

RAM(bytes) 128 256 128 



Timers 2 3 2 

I/O pins 32 32 32 

Serial port 1 1 1 

Interrupt sources 6 8 6 

 

Features of 8051 Microcontroller 

An 8051 microcontroller comes bundled with the following features − 

64K bytes on-chip program memory (ROM) 

128 bytes on-chip data memory (RAM) 

Four register banks 

128 user defined software flags 

8-bit bidirectional data bus 

16-bit unidirectional address bus 

32 general purpose registers each of 8-bit 

16 bit Timers (usually 2, but may have more or less) 

Three internal and two external Interrupts 

Four 8-bit ports,(short model have two 8-bit ports) 

16-bit program counter and data pointer 

8051 may also have a number of special features such as UARTs, ADC, Op-amp, etc. 

Block Diagram of 8051 Microcontroller 

The following illustration shows the block diagram of an 8051 microcontroller − 

 

Embedded System - I/O Programming 

In 8051, I/O operations are done using four ports and 40 pins. The following pin diagram 

shows the details of the 40 pins. I/O operation port reserves 32 pins where each port has 8 



pins. The other 8 pins are designated as Vcc, GND, XTAL1, XTAL2, RST, EA (bar), 

ALE/PROG (bar), and PSEN (bar). 

It is a 40 Pin PDIP (Plastic Dual Inline Package) 

In a DIP package, you can recognize the first pin and the last pin by the cut at the middle of 

the IC. The first pin is on the left of this cut mark and the last pin (i.e. the 40th pin in this 

case) is to the right of the cut mark. 

I/O Ports and their Functions 

The four ports P0, P1, P2, and P3, each use 8 pins, making them 8-bit ports. Upon RESET, 

all the ports are configured as inputs, ready to be used as input ports. When the first 0 is 

written to a port, it becomes an output. To reconfigure it as an input, a 1 must be sent to a 

port. 

Port 0 (Pin No 32 – Pin No 39) 

It has 8 pins (32 to 39). It can be used for input or output. Unlike P1, P2, and P3 ports, we 

normally connect P0 to 10K-ohm pull-up resistors to use it as an input or output port being an 

open drain. 

It is also designated as AD0-AD7, allowing it to be used as both address and data. In case of 

8031 (i.e. ROMless Chip), when we need to access the external ROM, then P0 will be used 

for both Address and Data Bus. ALE (Pin no 31) indicates if P0 has address or data. When 

ALE = 0, it provides data D0-D7, but when ALE = 1, it has address A0-A7. In case no 

external memory connection is available, P0 must be connected externally to a 10K-ohm 

pull-up resistor. 

 

 



 

MOV A,#0FFH  ;(comments: A=FFH(Hexadecimal  i.e. A=1111 1111)   

 

MOV P0,A     ;(Port0 have 1's on every pin so that it works as Input) 

Port 1 (Pin 1 through 8) 

It is an 8-bit port (pin 1 through 8) and can be used either as input or output. It doesn't require 

pull-up resistors because they are already connected internally. Upon reset, Port 1 is 

configured as an input port. The following code can be used to send alternating values of 55H 

and AAH to Port 1. 

;Toggle all bits of continuously  

MOV     A,#55  

BACK:     

 

MOV     P2,A  

ACALL   DELAY  

CPL     A      ;complement(invert) reg. A  

SJMP    BACK 

If Port 1 is configured to be used as an output port, then to use it as an input port again, 

program it by writing 1 to all of its bits as in the following code. 

;Toggle all bits of continuously  

 

MOV     A ,#0FFH    ;A = FF hex  

MOV     P1,A        ;Make P1 an input port                      

MOV     A,P1        ;get data from P1  

MOV     R7,A        ;save it in Reg R7  

ACALL   DELAY       ;wait  

 

MOV     A,P1        ;get another data from P1  



MOV     R6,A        ;save it in R6  

ACALL   DELAY       ;wait  

 

MOV     A,P1        ;get another data from P1  

MOV     R5,A        ;save it in R5 

Port 2 (Pins 21 through 28) 

Port 2 occupies a total of 8 pins (pins 21 through 28) and can be used for both input and 

output operations. Just as P1 (Port 1), P2 also doesn't require external Pull-up resistors 

because they are already connected internally. It must be used along with P0 to provide the 

16-bit address for the external memory. So it is also designated as (A0–A7), as shown in the 

pin diagram. When the 8051 is connected to an external memory, it provides path for upper 

8-bits of 16-bits address, and it cannot be used as I/O. Upon reset, Port 2 is configured as an 

input port. The following code can be used to send alternating values of 55H and AAH to 

port 2. 

;Toggle all bits of continuously  

MOV     A,#55  

BACK:  

MOV     P2,A  

ACALL   DELAY  

CPL     A         ; complement(invert) reg. A  

SJMP    BACK 

If Port 2 is configured to be used as an output port, then to use it as an input port again, 

program it by writing 1 to all of its bits as in the following code. 

;Get a byte from P2 and send it to P1  

MOV    A,#0FFH    ;A = FF hex  

MOV    P2,A       ;make P2 an input port  

BACK:  

MOV    A,P2       ;get data from P2  

MOV    P1,A       ;send it to Port 1 

SJMP   BACK       ;keep doing that 

Port 3 (Pins 10 through 17) 

It is also of 8 bits and can be used as Input/Output. This port provides some extremely 

important signals. P3.0 and P3.1 are RxD (Receiver) and TxD (Transmitter) respectively and 

are collectively used for Serial Communication. P3.2 and P3.3 pins are used for external 

interrupts. P3.4 and P3.5 are used for timers T0 and T1 respectively. P3.6 and P3.7 are Write 

(WR) and Read (RD) pins. These are active low pins, means they will be active when 0 is 

given to them and these are used to provide Read and Write operations to External ROM in 

8031 based systems. 

P3 Bit Function Pin 

P3.0 RxD 10 

P3.1 < TxD 11 



P3.2 < Complement of INT0 12 

P3.3 < INT1 13 

P3.4 < T0 14 

P3.5 < T1 15 

P3.6 < WR 16 

P3.7 < Complement of RD 17 

Dual Role of Port 0 and Port 2 

Dual role of Port 0 − Port 0 is also designated as AD0–AD7, as it can be used for both data 

and address handling. While connecting an 8051 to external memory, Port 0 can provide both 

address and data. The 8051 microcontroller then multiplexes the input as address or data in 

order to save pins. 

Dual role of Port 2 − Besides working as I/O, Port P2 is also used to provide 16-bit address 

bus for external memory along with Port 0. Port P2 is also designated as (A8– A15), while 

Port 0 provides the lower 8-bits via A0–A7. In other words, we can say that when an 8051 is 

connected to an external memory (ROM) which can be maximum up to 64KB and this is 

possible by 16 bit address bus because we know 216 = 64KB. Port2 is used for the upper 8-

bit of the 16 bits address, and it cannot be used for I/O and this is the way any Program code 

of external ROM is addressed. 

Hardware Connection of Pins 

Vcc − Pin 40 provides supply to the Chip and it is +5 V. 

Gnd − Pin 20 provides ground for the Reference. 

XTAL1, XTAL2 (Pin no 18 & Pin no 19) − 8051 has on-chip oscillator but requires external 

clock to run it. A quartz crystal is connected between the XTAL1 & XTAL2 pin of the chip. 

This crystal also needs two capacitors of 30pF for generating a signal of desired frequency. 

One side of each capacitor is connected to ground. 8051 IC is available in various speeds and 

it all depends on this Quartz crystal, for example, a 20 MHz microcontroller requires a crystal 

with a frequency no more than 20 MHz. 

 



RST (Pin No. 9) − It is an Input pin and active High pin. Upon applying a high pulse on this 

pin, that is 1, the microcontroller will reset and terminate all activities. This process is known 

as Power-On Reset. Activating a power-on reset will cause all values in the register to be lost. 

It will set a program counter to all 0's. To ensure a valid input of Reset, the high pulse must 

be high for a minimum of two machine cycles before it is allowed to go low, which depends 

on the capacitor value and the rate at which it charges. (Machine Cycle is the minimum 

amount of frequency a single instruction requires in execution). 

EA or External Access (Pin No. 31) − It is an input pin. This pin is an active low pin; upon 

applying a low pulse, it gets activated. In case of microcontroller (8051/52) having on-chip 

ROM, the EA (bar) pin is connected to Vcc. But in an 8031 microcontroller which does not 

have an on-chip ROM, the code is stored in an external ROM and then fetched by the 

microcontroller. In this case, we must connect the (pin no 31) EA to Gnd to indicate that the 

program code is stored externally. 

 

PSEN or Program store Enable (Pin No 29) − This is also an active low pin, i.e., it gets 

activated after applying a low pulse. It is an output pin and used along with the EA pin in 

8031 based (i.e. ROMLESS) Systems to allow storage of program code in external ROM. 

ALE or (Address Latch Enable) − This is an Output Pin and is active high. It is especially 

used for 8031 IC to connect it to the external memory. It can be used while deciding whether 

P0 pins will be used as Address bus or Data bus. When ALE = 1, then the P0 pins work as 

Data bus and when ALE = 0, then the P0 pins act as Address bus. 

I/O Ports and Bit Addressability 

It is a most widely used feature of 8051 while writing code for 8051. Sometimes we need to 

access only 1 or 2 bits of the port instead of the entire 8-bits. 8051 provides the capability to 

access individual bits of the ports. 

While accessing a port in a single-bit manner, we use the syntax "SETB X. Y" where X is the 

port number (0 to 3), and Y is a bit number (0 to 7) for data bits D0-D7 where D0 is the LSB 

and D7 is the MSB. For example, "SETB P1.5" sets high bit 5 of port 1. 

The following code shows how we can toggle the bit P1.2 continuously. 

AGAIN:  

SETB    P1.2 

ACALL   DELAY     

CLR     P1.2       



ACALL   DELAY  

SJMP    AGAIN 

Single-Bit Instructions 

Instructions Function 

SETB bit Set the bit (bit = 1) 

CLR bit clear the bit (bit = 0) 

CPL bit complement the bit (bit = NOT bit) 

JB bit, target jump to target if bit = 1 (jump if bit) 

JNB bit, target jump to target if bit = 0 (jump if no bit) 

JBC bit, target jump to target if bit = 1, clear bit (jump if bit, then clear) 

Embedded Systems - Terms 

Program Counter 

The Program Counter is a 16- or 32-bit register which contains the address of the next 

instruction to be executed. The PC automatically increments to the next sequential memory 

location every time an instruction is fetched. Branch, jump, and interrupt operations load the 

Program Counter with an address other than the next sequential location. 

Activating a power-on reset will cause all values in the register to be lost. It means the value 

of the PC (program counter) is 0 upon reset, forcing the CPU to fetch the first opcode from 

the ROM memory location 0000. It means we must place the first byte of upcode in ROM 

location 0000 because that is where the CPU expects to find the first instruction 

Reset Vector 

The significance of the reset vector is that it points the processor to the memory address 

which contains the firmware's first instruction. Without the Reset Vector, the processor 

would not know where to begin execution. Upon reset, the processor loads the Program 

Counter (PC) with the reset vector value from a predefined memory location. On CPU08 

architecture, this is at location $FFFE:$FFFF. 

When the reset vector is not necessary, developers normally take it for granted and don’t 

program into the final image. As a result, the processor doesn't start up on the final product. It 

is a common mistake that takes place during the debug phase. 

Stack Pointer 

Stack is implemented in RAM and a CPU register is used to access it called SP (Stack 

Pointer) register. SP register is an 8-bit register and can address memory addresses of range 

00h to FFh. Initially, the SP register contains value 07 to point to location 08 as the first 

location being used for the stack by the 8051. 

When the content of a CPU register is stored in a stack, it is called a PUSH operation. When 

the content of a stack is stored in a CPU register, it is called a POP operation. In other words, 

a register is pushed onto the stack to save it and popped off the stack to retrieve it. 

Infinite Loop 



An infinite loop or an endless loop can be identified as a sequence of instructions in a 

computer program that executes endlessly in a loop, because of the following reasons − 

loop with no terminating condition. 

loop with a terminating condition that can never be met. 

loop with a terminating condition that causes the loop to start over. 

Such infinite loops normally caused older operating systems to become unresponsive, as an 

infinite loop consumes all the available processor time. I/O operations waiting for user inputs 

are also called "infinite loops". One possible cause of a computer "freezing" is an infinite 

loop; other causes include deadlock and access violations. 

Embedded systems, unlike a PC, never "exit" an application. They idle through an Infinite 

Loop waiting for an event to take place in the form of an interrupt, or a pre-scheduled task. In 

order to save power, some processors enter special sleep or wait modes instead of idling 

through an Infinite Loop, but they will come out of this mode upon either a timer or an 

External Interrupt. 

 

Interrupts 

Interrupts are mostly hardware mechanisms that instruct the program that an event has 

occurred. They may occur at any time, and are therefore asynchronous to the program flow. 

They require special handling by the processor, and are ultimately handled by a 

corresponding Interrupt Service Routine (ISR). Interrupts need to be handled quickly. If you 

take too much time servicing an interrupt, then you may miss another interrupt. 

Little Endian Vs Big Endian 

Although numbers are always displayed in the same way, they are not stored in the same way 

in memory. Big-Endian machines store the most significant byte of data in the lowest 

memory address. A Big-Endian machine stores 0x12345678 as − 

ADD+0: 0x12  

ADD+1: 0x34  

ADD+2: 0x56  

ADD+3: 0x78 

Little-Endian machines, on the other hand, store the least significant byte of data in the 

lowest memory address. A Little-Endian machine stores 0x12345678 as − 

ADD+0: 0x78  

ADD+1: 0x56  

ADD+2: 0x34  

ADD+3: 0x12 

Embedded Systems - Assembly Language 

Assembly languages were developed to provide mnemonics or symbols for the machine level 

code instructions. Assembly language programs consist of mnemonics, thus they should be 

translated into machine code. A program that is responsible for this conversion is known 

as assembler. Assembly language is often termed as a low-level language because it directly 

works with the internal structure of the CPU. To program in assembly language, a 

programmer must know all the registers of the CPU. 

Different programming languages such as C, C++, Java and various other languages are 

called high-level languages because they do not deal with the internal details of a CPU. In 



contrast, an assembler is used to translate an assembly language program into machine code 

(sometimes also called object code or opcode). Similarly, a compiler translates a high-level 

language into machine code. For example, to write a program in C language, one must use a 

C compiler to translate the program into machine language. 

Structure of Assembly Language 

An assembly language program is a series of statements, which are either assembly language 

instructions such as ADD and MOV, or statements called directives. 

An instruction tells the CPU what to do, while a directive (also called pseudo-instructions) 

gives instruction to the assembler. For example, ADD and MOV instructions are commands 

which the CPU runs, while ORG and END are assembler directives. The assembler places the 

opcode to the memory location 0 when the ORG directive is used, while END indicates to the 

end of the source code. A program language instruction consists of the following four fields − 

[ label: ]   mnemonics  [ operands ]   [;comment ]  

A square bracket ( [ ] ) indicates that the field is optional. 

The label field allows the program to refer to a line of code by name. The label fields cannot 

exceed a certain number of characters. 

The mnemonics and operands fields together perform the real work of the program and 

accomplish the tasks. Statements like ADD A , C & MOV C, #68 where ADD and MOV are 

the mnemonics, which produce opcodes ; "A, C" and "C, #68" are operands. These two fields 

could contain directives. Directives do not generate machine code and are used only by the 

assembler, whereas instructions are translated into machine code for the CPU to execute. 

0000            ORG  0H             ;start (origin) at location 0  

0000   7D25     MOV  R5,#25H        ;load 25H into R5  

0002   7F34     MOV  R7,#34H        ;load 34H into  R7  

0004   7400     MOV  A,#0           ;load 0 into A  

0006   2D        ADD  A,R5           ;add contents of R5 to A  

0007   2F        ADD  A,R7           ;add contents of R7 to A 

0008   2412     ADD  A,#12H         ;add to A value 12 H  

000A   80FE     HERE: SJMP HERE   ;stay in this loop  

000C     END                         ;end of asm source file 

The comment field begins with a semicolon which is a comment indicator. 

Notice the Label "HERE" in the program. Any label which refers to an instruction should be 

followed by a colon. 

Assembling and Running an 8051 Program 

Here we will discuss about the basic form of an assembly language. The steps to create, 

assemble, and run an assembly language program are as follows − 

First, we use an editor to type in a program similar to the above program. Editors like MS-

DOS EDIT program that comes with all Microsoft operating systems can be used to create or 

edit a program. The Editor must be able to produce an ASCII file. The "asm" extension for 

the source file is used by an assembler in the next step. 

The "asm" source file contains the program code created in Step 1. It is fed to an 8051 

assembler. The assembler then converts the assembly language instructions into machine 

code instructions and produces an .obj file (object file) and a .lst file (list file). It is also called 

as a source file, that's why some assemblers require that this file have the "src" extensions. 



The "lst" file is optional. It is very useful to the program because it lists all the opcodes and 

addresses as well as errors that the assemblers detected. 

Assemblers require a third step called linking. The link program takes one or more object 

files and produces an absolute object file with the extension "abs". 

Next, the "abs" file is fed to a program called "OH" (object to hex converter), which creates a 

file with the extension "hex" that is ready to burn in to the ROM. 

 

Data Type 

The 8051 microcontroller contains a single data type of 8-bits, and each register is also of 8-

bits size. The programmer has to break down data larger than 8-bits (00 to FFH, or to 255 in 

decimal) so that it can be processed by the CPU. 

DB (Define Byte) 

The DB directive is the most widely used data directive in the assembler. It is used to define 

the 8-bit data. It can also be used to define decimal, binary, hex, or ASCII formats data. For 

decimal, the "D" after the decimal number is optional, but it is required for "B" (binary) and 

"Hl" (hexadecimal). 

To indicate ASCII, simply place the characters in quotation marks ('like this'). The assembler 

generates ASCII code for the numbers/characters automatically. The DB directive is the only 

directive that can be used to define ASCII strings larger than two characters; therefore, it 

should be used for all the ASCII data definitions. Some examples of DB are given below − 

        ORG  500H  

DATA1:  DB   28                     ;DECIMAL (1C in hex)  

DATA2:  DB   00110101B              ;BINARY  (35 in hex)  

DATA3:  DB   39H                    ;HEX  

        ORG  510H  

DATA4:  DB   "2591"                 ;ASCII  NUMBERS  



        ORG  520H                          

DATA6:  DA   "MY NAME IS Michael"   ;ASCII CHARACTERS  

Either single or double quotes can be used around ASCII strings. DB is also used to allocate 

memory in byte-sized chunks. 

Assembler Directives 

Some of the directives of 8051 are as follows − 

ORG (origin) − The origin directive is used to indicate the beginning of the address. It takes 

the numbers in hexa or decimal format. If H is provided after the number, the number is 

treated as hexa, otherwise decimal. The assembler converts the decimal number to hexa. 

EQU (equate) − It is used to define a constant without occupying a memory location. EQU 

associates a constant value with a data label so that the label appears in the program, its 

constant value will be substituted for the label. While executing the instruction "MOV R3, 

#COUNT", the register R3 will be loaded with the value 25 (notice the # sign). The 

advantage of using EQU is that the programmer can change it once and the assembler will 

change all of its occurrences; the programmer does not have to search the entire program. 

END directive − It indicates the end of the source (asm) file. The END directive is the last 

line of the program; anything after the END directive is ignored by the assembler. 

Labels in Assembly Language 

All the labels in assembly language must follow the rules given below − 

Each label name must be unique. The names used for labels in assembly language 

programming consist of alphabetic letters in both uppercase and lowercase, number 0 through 

9, and special characters such as question mark (?), period (.), at the rate @, underscore (_), 

and dollar($). 

The first character should be in alphabetical character; it cannot be a number. 

Reserved words cannot be used as a label in the program. For example, ADD and MOV 

words are the reserved words, since they are instruction mnemonics. 

Embedded Systems - Registers 

Registers are used in the CPU to store information on temporarily basis which could be data 

to be processed, or an address pointing to the data which is to be fetched. In 8051, there is 

one data type is of 8-bits, from the MSB (most significant bit) D7 to the LSB (least 

significant bit) D0. With 8-bit data type, any data type larger than 8-bits must be broken into 

8-bit chunks before it is processed. 

The most widely used registers of the 8051 are A (accumulator), B, R0-R7, DPTR (data 

pointer), and PC (program counter). All these registers are of 8-bits, except DPTR and PC. 

Storage Registers in 8051 

We will discuss the following types of storage registers here − 

Accumulator 

R register 

B register 

Data Pointer (DPTR) 

Program Counter (PC) 

Stack Pointer (SP) 

Accumulator 



The accumulator, register A, is used for all arithmetic and logic operations. If the 

accumulator is not present, then every result of each calculation (addition, multiplication, 

shift, etc.) is to be stored into the main memory. Access to main memory is slower than 

access to a register like the accumulator because the technology used for the large main 

memory is slower (but cheaper) than that used for a register. 

The "R" Registers 

The "R" registers are a set of eight registers, namely, R0, R1 to R7. These registers function 

as auxiliary or temporary storage registers in many operations. Consider an example of the 

sum of 10 and 20. Store a variable 10 in an accumulator and another variable 20 in, say, 

register R4. To process the addition operation, execute the following command − 

ADD A,R4 

After executing this instruction, the accumulator will contain the value 30. Thus "R" registers 

are very important auxiliary or helper registers. The Accumulator alone would not be very 

useful if it were not for these "R" registers. The "R" registers are meant for temporarily 

storage of values. 

Let us take another example. We will add the values in R1 and R2 together and then subtract 

the values of R3 and R4 from the result. 

MOV A,R3   ;Move the value of R3 into the accumulator  

ADD A,R4   ;Add the value of R4  

MOV R5,A   ;Store the resulting value temporarily in R5  

MOV A,R1   ;Move the value of R1 into the accumulator  

ADD A,R2   ;Add the value of R2  

SUBB A,R5  ;Subtract the value of R5 (which now contains R3 + R4) 

As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course, this is not 

the most efficient way to calculate (R1 + R2) – (R3 + R4), but it does illustrate the use of the 

"R" registers as a way to store values temporarily. 

 

The "B" Register 

The "B" register is very similar to the Accumulator in the sense that it may hold an 8-bit (1-

byte) value. The "B" register is used only by two 8051 instructions: MUL AB and DIV AB. 



To quickly and easily multiply or divide A by another number, you may store the other 

number in "B" and make use of these two instructions. Apart from using MUL and DIV 

instructions, the "B" register is often used as yet another temporary storage register, much 

like a ninth R register. 

The Data Pointer 

The Data Pointer (DPTR) is the 8051’s only user-accessible 16-bit (2-byte) register. The 

Accumulator, R0–R7 registers and B register are 1-byte value registers. DPTR is meant for 

pointing to data. It is used by the 8051 to access external memory using the address indicated 

by DPTR. DPTR is the only 16-bit register available and is often used to store 2-byte values. 

The Program Counter 

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next instruction 

to execute can be found in the memory. PC starts at 0000h when the 8051 initializes and is 

incremented every time after an instruction is executed. PC is not always incremented by 1. 

Some instructions may require 2 or 3 bytes; in such cases, the PC will be incremented by 2 or 

3. 

Branch, jump, and interrupt operations load the Program Counter with an address other than 

the next sequential location. Activating a power-on reset will cause all values in the register 

to be lost. It means the value of the PC is 0 upon reset, forcing the CPU to fetch the first 

opcode from the ROM location 0000. It means we must place the first byte of upcode in 

ROM location 0000 because that is where the CPU expects to find the first instruction. 

The Stack Pointer (SP) 

The Stack Pointer, like all registers except DPTR and PC, may hold an 8-bit (1-byte) value. 

The Stack Pointer tells the location from where the next value is to be removed from the 

stack. When a value is pushed onto the stack, the value of SP is incremented and then the 

value is stored at the resulting memory location. When a value is popped off the stack, the 

value is returned from the memory location indicated by SP, and then the value of SP is 

decremented. 

This order of operation is important. SP will be initialized to 07h when the 8051 is initialized. 

If a value is pushed onto the stack at the same time, the value will be stored in the internal 

RAM address 08h because the 8051 will first increment the value of SP (from 07h to 08h) 

and then will store the pushed value at that memory address (08h). SP is modified directly by 

the 8051 by six instructions: PUSH, POP, ACALL, LCALL, RET, and RETI. 

ROM Space in 8051 

Some family members of 8051 have only 4K bytes of on-chip ROM (e.g. 8751, AT8951); 

some have 8K ROM like AT89C52, and there are some family members with 32K bytes and 

64K bytes of on-chip ROM such as Dallas Semiconductor. The point to remember is that no 

member of the 8051 family can access more than 64K bytes of opcode since the program 

counter in 8051 is a 16-bit register (0000 to FFFF address). 

The first location of the program ROM inside the 8051 has the address of 0000H, whereas the 

last location can be different depending on the size of the ROM on the chip. Among the 8051 

family members, AT8951 has $k bytes of on-chip ROM having a memory address of 0000 

(first location) to 0FFFH (last location). 



 
8051 Flag Bits and PSW Register 

The program status word (PSW) register is an 8-bit register, also known as flag register. It is 

of 8-bit wide but only 6-bit of it is used. The two unused bits are user-defined flags. Four of 

the flags are called conditional flags, which means that they indicate a condition which 

results after an instruction is executed. These four are CY (Carry), AC (auxiliary 

carry), P (parity), and OV(overflow). The bits RS0 and RS1 are used to change the bank 

registers. The following figure shows the program status word register. 

The PSW Register contains that status bits that reflect the current status of the CPU. 

CY CA F0 RS1 RS0 OV - P 

 

CY PSW.7 Carry Flag 

AC PSW.6 Auxiliary Carry Flag 

F0 PSW.5 Flag 0 available to user for general purpose. 

RS1 PSW.4 Register Bank selector bit 1 

RS0 PSW.3 Register Bank selector bit 0 

OV PSW.2 Overflow Flag 

- PSW.1 User definable FLAG 

P PSW.0 Parity FLAG. Set/ cleared by hardware during instruction cycle to indicate 

even/odd number of 1 bit in accumulator. 

We can select the corresponding Register Bank bit using RS0 and RS1 bits. 

RS1 RS2 Register Bank Address 

0 0 0 00H-07H 



0 1 1 08H-0FH 

1 0 2 10H-17H 

1 1 3 18H-1FH 

CY, the carry flag − This carry flag is set (1) whenever there is a carry out from the D7 bit. It 

is affected after an 8-bit addition or subtraction operation. It can also be reset to 1 or 0 

directly by an instruction such as "SETB C" and "CLR C" where "SETB" stands for set bit 

carry and "CLR" stands for clear carry. 

AC, auxiliary carry flag − If there is a carry from D3 and D4 during an ADD or SUB 

operation, the AC bit is set; otherwise, it is cleared. It is used for the instruction to perform 

binary coded decimal arithmetic. 

P, the parity flag − The parity flag represents the number of 1's in the accumulator register 

only. If the A register contains odd number of 1's, then P = 1; and for even number of 1's, P = 

0. 

OV, the overflow flag − This flag is set whenever the result of a signed number operation is 

too large causing the high-order bit to overflow into the sign bit. It is used only to detect 

errors in signed arithmetic operations. 

Example 

Show the status of CY, AC, and P flags after the addition of 9CH and 64H in the following 

instruction. 

MOV A, #9CH 

ADD A, # 64H 

Solution:  9C   10011100  

          +64   01100100  

          100   00000000  

     

CY = 1 since there is a carry beyond D7 bit   

AC = 0 since there is a carry from D3 to D4  

P  = 0 because the accumulator has even number of 1's  

Embedded Systems - Registers Bank/Stack 

The 8051 microcontroller has a total of 128 bytes of RAM. We will discuss about the 

allocation of these 128 bytes of RAM and examine their usage as stack and register. 

RAM Memory Space Allocation in 8051 

The 128 bytes of RAM inside the 8051 are assigned the address 00 to 7FH. They can be 

accessed directly as memory locations and are divided into three different groups as follows − 

32 bytes from 00H to 1FH locations are set aside for register banks and the stack. 

16 bytes from 20H to 2FH locations are set aside for bit-addressable read/write memory. 

80 bytes from 30H to 7FH locations are used for read and write storage; it is called as scratch 

pad. These 80 locations RAM are widely used for the purpose of storing data and parameters 

by 8051 programmers. 



 
Register Banks in 8051 

A total of 32 bytes of RAM are set aside for the register banks and the stack. These 32 bytes 

are divided into four register banks in which each bank has 8 registers, R0–R7. RAM 

locations from 0 to 7 are set aside for bank 0 of R0–R7 where R0 is RAM location 0, R1 is 

RAM location 1, R2 is location 2, and so on, until the memory location 7, which belongs to 

R7 of bank 0. 

The second bank of registers R0–R7 starts at RAM location 08 and goes to locations OFH. 

The third bank of R0–R7 starts at memory location 10H and goes to location to 17H. Finally, 

RAM locations 18H to 1FH are set aside for the fourth bank of R0–R7. 

Default Register Bank 

If RAM locations 00–1F are set aside for the four registers banks, which register bank of R0–

R7 do we have access to when the 8051 is powered up? The answer is register bank 0; that is, 

RAM locations from 0 to 7 are accessed with the names R0 to R7 when programming the 

8051. Because it is much easier to refer these RAM locations by names such as R0 to R7, 

rather than by their memory locations. 

How to Switch Register Banks 

Register bank 0 is the default when the 8051 is powered up. We can switch to the other banks 

using PSW register. D4 and D3 bits of the PSW are used to select the desired register bank, 

since they can be accessed by the bit addressable instructions SETB and CLR. For example, 

"SETB PSW.3" will set PSW.3 = 1 and select the bank register 1. 



RS1 RS2 Bank Selected 

0 0 Bank0 

0 1 Bank1 

1 0 Bank2 

1 1 Bank3 

Stack and its Operations 

Stack in the 8051 

The stack is a section of a RAM used by the CPU to store information such as data or 

memory address on temporary basis. The CPU needs this storage area considering limited 

number of registers. 

How Stacks are Accessed 

As the stack is a section of a RAM, there are registers inside the CPU to point to it. The 

register used to access the stack is known as the stack pointer register. The stack pointer in 

the 8051 is 8-bits wide, and it can take a value of 00 to FFH. When the 8051 is initialized, the 

SP register contains the value 07H. This means that the RAM location 08 is the first location 

used for the stack. The storing operation of a CPU register in the stack is known as a PUSH, 

and getting the contents from the stack back into a CPU register is called a POP. 

Pushing into the Stack 

In the 8051, the stack pointer (SP) points to the last used location of the stack. When data is 

pushed onto the stack, the stack pointer (SP) is incremented by 1. When PUSH is executed, 

the contents of the register are saved on the stack and SP is incremented by 1. To push the 

registers onto the stack, we must use their RAM addresses. For example, the instruction 

"PUSH 1" pushes register R1 onto the stack. 

Popping from the Stack 

Popping the contents of the stack back into a given register is the opposite to the process of 

pushing. With every pop operation, the top byte of the stack is copied to the register specified 

by the instruction and the stack pointer is decremented once. 

Embedded Systems - Instructions 

The flow of program proceeds in a sequential manner, from one instruction to the next 

instruction, unless a control transfer instruction is executed. The various types of control 

transfer instruction in assembly language include conditional or unconditional jumps and call 

instructions. 

Loop and Jump Instructions 

Looping in the 8051 

Repeating a sequence of instructions a certain number of times is called a loop. An 

instruction DJNZ reg, label is used to perform a Loop operation. In this instruction, a register 

is decremented by 1; if it is not zero, then 8051 jumps to the target address referred to by the 

label. 

The register is loaded with the counter for the number of repetitions prior to the start of the 

loop. In this instruction, both the registers decrement and the decision to jump are combined 



into a single instruction. The registers can be any of R0–R7. The counter can also be a RAM 

location. 

Example 

Multiply 25 by 10 using the technique of repeated addition. 

Solution − Multiplication can be achieved by adding the multiplicand repeatedly, as many 

times as the multiplier. For example, 

25 * 10 = 250(FAH) 

25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 + 25 = 250 

   MOV A,#0             ;A = 0,clean ACC  

   MOV R2,#10           ; the multiplier is replaced in R2  

   Add A,#25            ;add the multiplicand to the ACC  

  

AGAIN:DJNZ R2,  

AGAIN:repeat  until R2 = 0 (10 times)  

 

   MOV R5 , A           ;save A in R5 ;R5 (FAH) 

Drawback in 8051 − Looping action with the instruction DJNZ Reg label is limited to 256 

iterations only. If a conditional jump is not taken, then the instruction following the jump is 

executed. 

Looping inside a Loop 

When we use a loop inside another loop, it is called a nested loop. Two registers are used to 

hold the count when the maximum count is limited to 256. So we use this method to repeat 

the action more times than 256. 

Example 

Write a program to − 

Load the accumulator with the value 55H. 

Complement the ACC 700 times. 

Solution − Since 700 is greater than 255 (the maximum capacity of any register), two 

registers are used to hold the count. The following code shows how to use two registers, R2 

and R3, for the count. 

   MOV A,#55H            ;A = 55H  

  

NEXT: MOV R3,#10         ;R3 the outer loop counter  

AGAIN:MOV R2,#70         ;R2 the inner loop counter  

 

   CPL A                 ;complement 

Other Conditional Jumps 

The following table lists the conditional jumps used in 8051 − 

Instruction Action 

JZ Jump if A = 0 

JNZ Jump if A ≠ 0 



DJNZ Decrement and Jump if register ≠ 0 

CJNE A, data Jump if A ≠ data 

CJNE reg, #data Jump if byte ≠ data 

JC Jump if CY = 1 

JNC Jump if CY ≠ 1 

JB Jump if bit = 1 

JNB Jump if bit = 0 

JBC Jump if bit = 1 and clear bit 

JZ (jump if A = 0) − In this instruction, the content of the accumulator is checked. If it is 

zero, then the 8051 jumps to the target address. JZ instruction can be used only for the 

accumulator, it does not apply to any other register. 

JNZ (jump if A is not equal to 0) − In this instruction, the content of the accumulator is 

checked to be non-zero. If it is not zero, then the 8051 jumps to the target address. 

JNC (Jump if no carry, jumps if CY = 0) − The Carry flag bit in the flag (or PSW) register is 

used to make the decision whether to jump or not "JNC label". The CPU looks at the carry 

flag to see if it is raised (CY = 1). If it is not raised, then the CPU starts to fetch and execute 

instructions from the address of the label. If CY = 1, it will not jump but will execute the next 

instruction below JNC. 

JC (Jump if carry, jumps if CY = 1) − If CY = 1, it jumps to the target address. 

JB (jump if bit is high) 

JNB (jump if bit is low) 

Note − It must be noted that all conditional jumps are short jumps, i.e., the address of the 

target must be within –128 to +127 bytes of the contents of the program counter. 

Unconditional Jump Instructions 

There are two unconditional jumps in 8051 − 

LJMP (long jump) − LJMP is 3-byte instruction in which the first byte represents opcode, 

and the second and third bytes represent the 16-bit address of the target location. The 2-byte 

target address is to allow a jump to any memory location from 0000 to FFFFH. 

SJMP (short jump) − It is a 2-byte instruction where the first byte is the opcode and the 

second byte is the relative address of the target location. The relative address ranges from 

00H to FFH which is divided into forward and backward jumps; that is, within –128 to +127 

bytes of memory relative to the address of the current PC (program counter). In case of 

forward jump, the target address can be within a space of 127 bytes from the current PC. In 

case of backward jump, the target address can be within –128 bytes from the current PC. 

Calculating the Short Jump Address 

All conditional jumps (JNC, JZ, and DJNZ) are short jumps because they are 2-byte 

instructions. In these instructions, the first byte represents opcode and the second byte 



represents the relative address. The target address is always relative to the value of the 

program counter. To calculate the target address, the second byte is added to the PC of the 

instruction immediately below the jump. Take a look at the program given below − 

Line   PC    Op-code   Mnemonic   Operand  

1      0000               ORG       0000  

2      0000  7800         MOV       R0,#003   

3      0002  7455         MOV       A,#55H0  

4      0004  6003         JZ        NEXT  

5      0006  08           INC       R0  

6      0007  04   AGAIN:  INC       A  

7      0008  04           INC       A  

8      0009  2477 NEXT:   ADD       A, #77h  

9      000B  5005         JNC       OVER  

10     000D  E4           CLR       A 

11     000E  F8           MOV       R0, A  

12     000F  F9           MOV       R1, A  

13     0010  FA          MOV       R2, A  

14     0011  FB           MOV       R3, A  

15     0012  2B   OVER:   ADD       A, R3  

16     0013  50F2         JNC       AGAIN  

17     0015  80FE HERE:   SJMP      HERE  

18     0017             END 

Backward Jump Target Address Calculation 

In case of a forward jump, the displacement value is a positive number between 0 to 127 (00 

to 7F in hex). However, for a backward jump, the displacement is a negative value of 0 to –

128. 

CALL Instructions 

CALL is used to call a subroutine or method. Subroutines are used to perform operations or 

tasks that need to be performed frequently. This makes a program more structured and saves 

memory space. There are two instructions − LCALL and ACALL. 

LCALL (Long Call) 

LCALL is a 3-byte instruction where the first byte represents the opcode and the second and 

third bytes are used to provide the address of the target subroutine. LCALL can be used to 

call subroutines which are available within the 64K-byte address space of the 8051. 

To make a successful return to the point after execution of the called subroutine, the CPU 

saves the address of the instruction immediately below the LCALL on the stack. Thus, when 

a subroutine is called, the control is transferred to that subroutine, and the processor saves the 

PC (program counter) on the stack and begins to fetch instructions from the new location. 

The instruction RET (return) transfers the control back to the caller after finishing execution 

of the subroutine. Every subroutine uses RET as the last instruction. 

ACALL (Absolute Call) 

ACALL is a 2-byte instruction, in contrast to LCALL which is 3 bytes. The target address of 

the subroutine must be within 2K bytes because only 11 bits of the 2 bytes are used for 

address. The difference between the ACALL and LCALL is that the target address for 



LCALL can be anywhere within the 64K-bytes address space of the 8051, while the target 

address of CALL is within a 2K-byte range. 

Embedded Systems - Addressing Modes 

An addressing mode refers to how you are addressing a given memory location. There are 

five different ways or five addressing modes to execute this instruction which are as follows 

− 

Immediate addressing mode 

Direct addressing mode 

Register direct addressing mode 

Register indirect addressing mode 

Indexed addressing mode 

Immediate Addressing Mode 

Let's begin with an example. 

MOV A, #6AH  

In general, we can write, 

MOV A, #data 

It is termed as immediate because 8-bit data is transferred immediately to the accumulator 

(destination operand). 

The following illustration describes the above instruction and its execution. The opcode 74H 

is saved at 0202 address. The data 6AH is saved at 0203 address in the program memory. 

After reading the opcode 74H, the data at the next program memory address is transferred to 

accumulator A (E0H is the address of accumulator). Since the instruction is of 2-bytes and is 

executed in one cycle, the program counter will be incremented by 2 and will point to 0204 of 

the program memory. 

 



Note − The '#' symbol before 6AH indicates that the operand is a data (8 bit). In the absence 

of '#', the hexadecimal number would be taken as an address. 

Direct Addressing Mode 

This is another way of addressing an operand. Here, the address of the data (source data) is 

given as an operand. Let’s take an example. 

MOV A, 04H  

The register bank#0 (4th register) has the address 04H. When the MOV instruction is 

executed, the data stored in register 04H is moved to the accumulator. As the register 04H 

holds the data 1FH, 1FH is moved to the accumulator. 

Note − We have not used '#' in direct addressing mode, unlike immediate mode. If we had 

used '#', the data value 04H would have been transferred to the accumulator instead of 1FH. 

Now, take a look at the following illustration. It shows how the instruction gets executed. 

 
As shown in the above illustration, this is a 2-byte instruction which requires 1 cycle to 

complete. The PC will be incremented by 2 and will point to 0204. The opcode for the 

instruction MOV A, address is E5H. When the instruction at 0202 is executed (E5H), the 

accumulator is made active and ready to receive data. Then the PC goes to the next address as 

0203 and looks up the address of the location of 04H where the source data (to be transferred 

to accumulator) is located. At 04H, the control finds the data 1F and transfers it to the 

accumulator and hence the execution is completed. 

Register Direct Addressing Mode 

In this addressing mode, we use the register name directly (as source operand). Let us try to 

understand with the help of an example. 

MOV A, R4  



At a time, the registers can take values from R0 to R7. There are 32 such registers. In order to 

use 32 registers with just 8 variables to address registers, register banks are used. There are 4 

register banks named from 0 to 3. Each bank comprises of 8 registers named from R0 to R7. 

At a time, a single register bank can be selected. Selection of a register bank is made possible 

through a Special Function Register (SFR) named Processor Status Word (PSW). PSW is an 

8-bit SFR where each bit can be programmed as required. Bits are designated from PSW.0 to 

PSW.7. PSW.3 and PSW.4 are used to select register banks. 

Now, take a look at the following illustration to get a clear understanding of how it works. 

 
Opcode EC is used for MOV A, R4. The opcode is stored at the address 0202 and when it is 

executed, the control goes directly to R4 of the respected register bank (that is selected in 

PSW). If register bank #0 is selected, then the data from R4 of register bank #0 will be moved 

to the accumulator. Here 2F is stored at 04H. 04H represents the address of R4 of register 

bank #0. 

Data (2F) movement is highlighted in bold. 2F is getting transferred to the accumulator from 

data memory location 0C H and is shown as dotted line. 0CH is the address location of 

Register 4 (R4) of register bank #1. The instruction above is 1 byte and requires 1 cycle for 

complete execution. What it means is, you can save program memory by using register direct 

addressing mode. 



Register Indirect Addressing Mode 

In this addressing mode, the address of the data is stored in the register as operand. 

MOV A, @R0  

Here the value inside R0 is considered as an address, which holds the data to be transferred to 

the accumulator. Example: If R0 has the value 20H, and data 2FH is stored at the address 

20H, then the value 2FH will get transferred to the accumulator after executing this 

instruction. See the following illustration. 

 
So the opcode for MOV A, @R0 is E6H. Assuming that the register bank #0 is selected, the 

R0 of register bank #0 holds the data 20H. Program control moves to 20H where it locates the 

data 2FH and it transfers 2FH to the accumulator. This is a 1-byte instruction and the 

program counter increments by 1 and moves to 0203 of the program memory. 

Note − Only R0 and R1 are allowed to form a register indirect addressing instruction. In other 

words, the programmer can create an instruction either using @R0 or @R1. All register 

banks are allowed. 

Indexed Addressing Mode 

We will take two examples to understand the concept of indexed addressing mode. Take a 

look at the following instructions − 

MOVC A, @A+DPTR 

and 

MOVC A, @A+PC 



where DPTR is the data pointer and PC is the program counter (both are 16-bit registers). 

Consider the first example. 

MOVC A, @A+DPTR 

The source operand is @A+DPTR. It contains the source data from this location. Here we are 

adding the contents of DPTR with the current content of the accumulator. This addition will 

give a new address which is the address of the source data. The data pointed by this address is 

then transferred to the accumulator. 

 
The opcode is 93H. DPTR has the value 01FE, where 01 is located in DPH (higher 8 bits) 

and FE is located in DPL (lower 8 bits). Accumulator has the value 02H. Then a 16-bit 

addition is performed and 01FE H+02H results in 0200 H. Data at the location 0200H will 

get transferred to the accumulator. The previous value inside the accumulator (02H) will be 

replaced with the new data from 0200H. The new data in the accumulator is highlighted in 

the illustration. 

This is a 1-byte instruction with 2 cycles needed for execution and the execution time 

required for this instruction is high compared to previous instructions (which were all 1 cycle 

each). 

The other example MOVC A, @A+PC works the same way as the above example. Instead of 

adding DPTR with the accumulator, here the data inside the program counter (PC) is added 

with the accumulator to obtain the target address. 

Embedded Systems - SFR Registers 

A Special Function Register (or Special Purpose Register, or simply Special Register) is a 

register within a microprocessor that controls or monitors the various functions of a 

microprocessor. As the special registers are closely tied to some special function or status of 



the processor, they might not be directly writable by normal instructions (like add, move, 

etc.). Instead, some special registers in some processor architectures require special 

instructions to modify them. 

In the 8051, register A, B, DPTR, and PSW are a part of the group of registers commonly 

referred to as SFR (special function registers). An SFR can be accessed by its name or by its 

address. 

The following table shows a list of SFRs and their addresses. 

Byte 

Address 

Bit Address  

FF   

F0 F7 F6 F5 F4 F3 F2 F1 F0 B 

E0 E7 E6 E5 E4 E3 E2 E1 E0 ACC 

D0 D7 D6 D5 D4 D3 D2 - D0 PSW 

B8 - - - BC BB BA B9 B8 IP 

B0 B7 B6 B5 B4 B3 B2 B1 B0 P3 

A2 AF - - AC AB AA A9 A8 IE 

A0 A7 A6 A5 A4 A3 A2 A1 A0 P2 

99 Not bit Addressable SBUF 

98 9F 9E 9D 9C 9B 9A 99 98 SCON 

90 97 96 95 94 93 92 91 90 P1 

8D Not bit Addressable TH1 

8C Not bit Addressable TH0 

8B Not bit Addressable TL1 

8A Not bit Addressable TL0 

89 Not bit Addressable TMOD 



88 8F 8E 8D 8C 8B 8A 89 88 TCON 

87 Not bit Addressable PCON 

83 Not bit Addressable DPH 

82 Not bit Addressable DPL 

81 Not bit Addressable SP 

80 87 87 85 84 83 82 81 80 P0 

Consider the following two points about the SFR addresses. 

A special function register can have an address between 80H to FFH. These addresses are above 80H, 

as the addresses from 00 to 7FH are the addresses of RAM memory inside the 8051. 

Not all the address space of 80 to FF are used by the SFR. Unused locations, 80H to FFH, are 

reserved and must not be used by the 8051 programmer. 

CY PSW.7 Carry Flag 

AC PSW.6 Auxiliary Carry Flag 

F0 PSW.5 Flag 0 available to user for general purpose. 

RS1 PSW.4 Register Bank selector bit 1 

RS0 PSW.3 Register Bank selector bit 0 

OV PSW.2 Overflow Flag 

- PSW.1 User definable FLAG 

P PSW.0 Parity FLAG. Set/ cleared by hardware during instruction cycle to indicate 

even/odd number of 1 bit in accumulator. 

In the following example, the SFR registers’ names are replaced with their addresses. 

CY AC F0 RS1 RS0 OV - P 

We can select the corresponding Register Bank bit using RS0 and RS1 bits. 

RS1 RS2 Register Bank Address 

0 0 0 00H-07H 

0 1 1 08H-0FH 

1 0 2 10H-17H 

1 1 3 18H-1FH 



The Program Status Word (PSW) contains status bits to reflect the current state of the CPU. The 8051 

variants provide one special function register, PSW, with this status information. The 8251 provides 

two additional status flags, Z and N, which are available in a second special function register called 

PSW1. 

Embedded Systems - Timer/Counter 

A timer is a specialized type of clock which is used to measure time intervals. A timer that counts 

from zero upwards for measuring time elapsed is often called a stopwatch. It is a device that counts 

down from a specified time interval and used to generate a time delay, for example, an hourglass is a 

timer. 

A counter is a device that stores (and sometimes displays) the number of times a particular event or 

process occurred, with respect to a clock signal. It is used to count the events happening outside the 

microcontroller. In electronics, counters can be implemented quite easily using register-type circuits 

such as a flip-flop. 

Difference between a Timer and a Counter 

The points that differentiate a timer from a counter are as follows − 

Timer Counter 

The register incremented for every 

machine cycle. 

The register is incremented considering 1 to 0 transition at 

its corresponding to an external input pin (T0, T1). 

Maximum count rate is 1/12 of the 

oscillator frequency. 

Maximum count rate is 1/24 of the oscillator frequency. 

A timer uses the frequency of the 

internal clock, and generates delay. 

A counter uses an external signal to count pulses. 

Timers of 8051 and their Associated Registers 

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event counters. Both 

Timer 0 and Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit architecture, each 16 bit is 

accessed as two separate registers of low-byte and high-byte. 

Timer 0 Register 

The 16-bit register of Timer 0 is accessed as low- and high-byte. The low-byte register is called TL0 

(Timer 0 low byte) and the high-byte register is called TH0 (Timer 0 high byte). These registers can 

be accessed like any other register. For example, the instruction MOV TL0, #4H moves the value into 

the low-byte of Timer #0. 

 
Timer 1 Register 

The 16-bit register of Timer 1 is accessed as low- and high-byte. The low-byte register is called TL1 

(Timer 1 low byte) and the high-byte register is called TH1 (Timer 1 high byte). These registers can 

be accessed like any other register. For example, the instruction MOV TL1, #4H moves the value into 

the low-byte of Timer 1. 



 
TMOD (Timer Mode) Register 

Both Timer 0 and Timer 1 use the same register to set the various timer operation modes. It is an 8-bit 

register in which the lower 4 bits are set aside for Timer 0 and the upper four bits for Timers. In each 

case, the lower 2 bits are used to set the timer mode in advance and the upper 2 bits are used to 

specify the location. 

 
Gate − When set, the timer only runs while INT(0,1) is high. 

C/T − Counter/Timer select bit. 

M1 − Mode bit 1. 

M0 − Mode bit 0. 

GATE 

Every timer has a means of starting and stopping. Some timers do this by software, some by 

hardware, and some have both software and hardware controls. 8051 timers have both software and 

hardware controls. The start and stop of a timer is controlled by software using the instruction SETB 

TR1 and CLR TR1 for timer 1, and SETB TR0 and CLR TR0 for timer 0. 

The SETB instruction is used to start it and it is stopped by the CLR instruction. These instructions 

start and stop the timers as long as GATE = 0 in the TMOD register. Timers can be started and 

stopped by an external source by making GATE = 1 in the TMOD register. 

C/T (CLOCK / TIMER) 

This bit in the TMOD register is used to decide whether a timer is used as a delay generator or 

an event manager. If C/T = 0, it is used as a timer for timer delay generation. The clock source to 

create the time delay is the crystal frequency of the 8051. If C/T = 0, the crystal frequency attached to 

the 8051 also decides the speed at which the 8051 timer ticks at a regular interval. 

Timer frequency is always 1/12th of the frequency of the crystal attached to the 8051. Although 

various 8051 based systems have an XTAL frequency of 10 MHz to 40 MHz, we normally work with 

the XTAL frequency of 11.0592 MHz. It is because the baud rate for serial communication of the 

8051.XTAL = 11.0592 allows the 8051 system to communicate with the PC with no errors. 

M1 / M2 

M1 M2 Mode 

0 0 13-bit timer mode. 

0 1 16-bit timer mode. 



1 0 8-bit auto reload mode. 

1 1 Spilt mode. 

Different Modes of Timers 

Mode 0 (13-Bit Timer Mode) 

Both Timer 1 and Timer 0 in Mode 0 operate as 8-bit counters (with a divide-by-32 prescaler). Timer 

register is configured as a 13-bit register consisting of all the 8 bits of TH1 and the lower 5 bits of 

TL1. The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TR1) 

does not clear the register. The timer interrupt flag TF1 is set when the count rolls over from all 1s to 

all 0s. Mode 0 operation is the same for Timer 0 as it is for Timer 1. 

Mode 1 (16-Bit Timer Mode) 

Timer mode "1" is a 16-bit timer and is a commonly used mode. It functions in the same way as 13-bit 

mode except that all 16 bits are used. TLx is incremented starting from 0 to a maximum 255. Once the 

value 255 is reached, TLx resets to 0 and then THx is incremented by 1. As being a full 16-bit timer, 

the timer may contain up to 65536 distinct values and it will overflow back to 0 after 65,536 machine 

cycles. 

Mode 2 (8 Bit Auto Reload) 

Both the timer registers are configured as 8-bit counters (TL1 and TL0) with automatic reload. 

Overflow from TL1 (TL0) sets TF1 (TF0) and also reloads TL1 (TL0) with the contents of Th1 

(TH0), which is preset by software. The reload leaves TH1 (TH0) unchanged. 

The benefit of auto-reload mode is that you can have the timer to always contain a value from 200 to 

255. If you use mode 0 or 1, you would have to check in the code to see the overflow and, in that case, 

reset the timer to 200. In this case, precious instructions check the value and/or get reloaded. In mode 

2, the microcontroller takes care of this. Once you have configured a timer in mode 2, you don't have 

to worry about checking to see if the timer has overflowed, nor do you have to worry about resetting 

the value because the microcontroller hardware will do it all for you. The auto-reload mode is used for 

establishing a common baud rate. 

Mode 3 (Split Timer Mode) 

Timer mode "3" is known as split-timer mode. When Timer 0 is placed in mode 3, it becomes two 

separate 8-bit timers. Timer 0 is TL0 and Timer 1 is TH0. Both the timers count from 0 to 255 and in 

case of overflow, reset back to 0. All the bits that are of Timer 1 will now be tied to TH0. 

When Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be set in modes 0, 1 or 2, but 

it cannot be started/stopped as the bits that do that are now linked to TH0. The real timer 1 will be 

incremented with every machine cycle. 

Initializing a Timer 

Decide the timer mode. Consider a 16-bit timer that runs continuously, and is independent of any 

external pins. 

Initialize the TMOD SFR. Use the lowest 4 bits of TMOD and consider Timer 0. Keep the two bits, 

GATE 0 and C/T 0, as 0, since we want the timer to be independent of the external pins. As 16-bit 

mode is timer mode 1, clear T0M1 and set T0M0. Effectively, the only bit to turn on is bit 0 of 

TMOD. Now execute the following instruction − 

MOV TMOD,#01h 

Now, Timer 0 is in 16-bit timer mode, but the timer is not running. To start the timer in running mode, 

set the TR0 bit by executing the following instruction − 

SETB TR0 

Now, Timer 0 will immediately start counting, being incremented once every machine cycle. 

Reading a Timer 



A 16-bit timer can be read in two ways. Either read the actual value of the timer as a 16-bit number, or 

you detect when the timer has overflowed. 

Detecting Timer Overflow 

When a timer overflows from its highest value to 0, the microcontroller automatically sets the TFx bit 

in the TCON register. So instead of checking the exact value of the timer, the TFx bit can be checked. 

If TF0 is set, then Timer 0 has overflowed; if TF1 is set, then Timer 1 has overflowed. 

Embedded Systems - Interrupt 

An interrupt is a signal to the processor emitted by hardware or software indicating an event that 

needs immediate attention. Whenever an interrupt occurs, the controller completes the execution of 

the current instruction and starts the execution of an Interrupt Service Routine (ISR) or Interrupt 

Handler. ISR tells the processor or controller what to do when the interrupt occurs. The interrupts can 

be either hardware interrupts or software interrupts. 

Hardware Interrupt 

A hardware interrupt is an electronic alerting signal sent to the processor from an external device, like 

a disk controller or an external peripheral. For example, when we press a key on the keyboard or 

move the mouse, they trigger hardware interrupts which cause the processor to read the keystroke or 

mouse position. 

Software Interrupt 

A software interrupt is caused either by an exceptional condition or a special instruction in the 

instruction set which causes an interrupt when it is executed by the processor. For example, if the 

processor's arithmetic logic unit runs a command to divide a number by zero, to cause a divide-by-

zero exception, thus causing the computer to abandon the calculation or display an error message. 

Software interrupt instructions work similar to subroutine calls. 

What is Polling? 

The state of continuous monitoring is known as polling. The microcontroller keeps checking the status 

of other devices; and while doing so, it does no other operation and consumes all its processing time 

for monitoring. This problem can be addressed by using interrupts. 

In the interrupt method, the controller responds only when an interruption occurs. Thus, the controller 

is not required to regularly monitor the status (flags, signals etc.) of interfaced and inbuilt devices. 

Interrupts v/s Polling 

Here is an analogy that differentiates an interrupt from polling − 

Interrupt Polling 

An interrupt is like a shopkeeper. If one 

needs a service or product, he goes to him 

and apprises him of his needs. In case of 

interrupts, when the flags or signals are 

received, they notify the controller that they 

need to be serviced. 

The polling method is like a salesperson. The 

salesman goes from door to door while requesting 

to buy a product or service. Similarly, the controller 

keeps monitoring the flags or signals one by one for 

all devices and provides service to whichever 

component that needs its service. 

Interrupt Service Routine 

For every interrupt, there must be an interrupt service routine (ISR), or interrupt handler. When an 

interrupt occurs, the microcontroller runs the interrupt service routine. For every interrupt, there is a 

fixed location in memory that holds the address of its interrupt service routine, ISR. The table of 

memory locations set aside to hold the addresses of ISRs is called as the Interrupt Vector Table. 



 
Interrupt Vector Table 

There are six interrupts including RESET in 8051. 

Interrupts ROM Location (Hex) Pin 

Interrupts ROM Location (HEX)  

Serial COM (RI and TI) 0023  

Timer 1 interrupts(TF1) 001B  

External HW interrupt 1 (INT1) 0013 P3.3 (13) 

External HW interrupt 0 (INT0) 0003 P3.2 (12) 

Timer 0 (TF0) 000B  

Reset 0000 9 

When the reset pin is activated, the 8051 jumps to the address location 0000. This is power-up reset. 

Two interrupts are set aside for the timers: one for timer 0 and one for timer 1. Memory locations are 

000BH and 001BH respectively in the interrupt vector table. 

Two interrupts are set aside for hardware external interrupts. Pin no. 12 and Pin no. 13 in Port 3 are 

for the external hardware interrupts INT0 and INT1, respectively. Memory locations are 0003H and 

0013H respectively in the interrupt vector table. 

Serial communication has a single interrupt that belongs to both receive and transmit. Memory 

location 0023H belongs to this interrupt. 



Steps to Execute an Interrupt 

When an interrupt gets active, the microcontroller goes through the following steps − 

The microcontroller closes the currently executing instruction and saves the address of the next 

instruction (PC) on the stack. 

It also saves the current status of all the interrupts internally (i.e., not on the stack). 

It jumps to the memory location of the interrupt vector table that holds the address of the interrupts 

service routine. 

The microcontroller gets the address of the ISR from the interrupt vector table and jumps to it. It starts 

to execute the interrupt service subroutine, which is RETI (return from interrupt). 

Upon executing the RETI instruction, the microcontroller returns to the location where it was 

interrupted. First, it gets the program counter (PC) address from the stack by popping the top bytes of 

the stack into the PC. Then, it start to execute from that address. 

Edge Triggering vs. Level Triggering 

Interrupt modules are of two types − level-triggered or edge-triggered. 

Level Triggered Edge Triggered 

A level-triggered interrupt module 

always generates an interrupt whenever 

the level of the interrupt source is 

asserted. 

An edge-triggered interrupt module generates an 

interrupt only when it detects an asserting edge of the 

interrupt source. The edge gets detected when the 

interrupt source level actually changes. It can also be 

detected by periodic sampling and detecting an asserted 

level when the previous sample was de-asserted. 

If the interrupt source is still asserted 

when the firmware interrupt handler 

handles the interrupt, the interrupt 

module will regenerate the interrupt, 

causing the interrupt handler to be 

invoked again. 

Edge-triggered interrupt modules can be acted 

immediately, no matter how the interrupt source 

behaves. 

Level-triggered interrupts are 

cumbersome for firmware. 

Edge-triggered interrupts keep the firmware's code 

complexity low, reduce the number of conditions for 

firmware, and provide more flexibility when interrupts 

are handled. 

Enabling and Disabling an Interrupt 

Upon Reset, all the interrupts are disabled even if they are activated. The interrupts must be enabled 

using software in order for the microcontroller to respond to those interrupts. 

IE (interrupt enable) register is responsible for enabling and disabling the interrupt. IE is a 

bitaddressable register. 

Interrupt Enable Register 

EA - ET2 ES ET1 EX1 ET0 EX0 

EA − Global enable/disable. 

- − Undefined. 

ET2 − Enable Timer 2 interrupt. 

ES − Enable Serial port interrupt. 

ET1 − Enable Timer 1 interrupt. 



EX1 − Enable External 1 interrupt. 

ET0 − Enable Timer 0 interrupt. 

EX0 − Enable External 0 interrupt. 

To enable an interrupt, we take the following steps − 

Bit D7 of the IE register (EA) must be high to allow the rest of register to take effect. 

If EA = 1, interrupts will be enabled and will be responded to, if their corresponding bits in IE are 

high. If EA = 0, no interrupts will respond, even if their associated pins in the IE register are high. 

Interrupt Priority in 8051 

We can alter the interrupt priority by assigning the higher priority to any one of the interrupts. This is 

accomplished by programming a register called IP(interrupt priority). 

The following figure shows the bits of IP register. Upon reset, the IP register contains all 0's. To give 

a higher priority to any of the interrupts, we make the corresponding bit in the IP register high. 

- - - - PT1 PX1 PT0 PX0 

 

- IP.7 Not Implemented. 

- IP.6 Not Implemented. 

- IP.5 Not Implemented. 

- IP.4 Not Implemented. 

PT1 IP.3 Defines the Timer 1 interrupt priority level. 

PX1 IP.2 Defines the External Interrupt 1 priority level. 

PT0 IP.1 Defines the Timer 0 interrupt priority level. 

PX0 IP.0 Defines the External Interrupt 0 priority level. 

Interrupt inside Interrupt 

What happens if the 8051 is executing an ISR that belongs to an interrupt and another one gets active? 

In such cases, a high-priority interrupt can interrupt a low-priority interrupt. This is known as interrupt 

inside interrupt. In 8051, a low-priority interrupt can be interrupted by a high-priority interrupt, but 

not by any another low-priority interrupt. 

Triggering an Interrupt by Software 

There are times when we need to test an ISR by way of simulation. This can be done with the simple 

instructions to set the interrupt high and thereby cause the 8051 to jump to the interrupt vector table. 

For example, set the IE bit as 1 for timer 1. An instruction SETB TF1 will interrupt the 8051 in 

whatever it is doing and force it to jump to the interrupt vector table. 

 

 

 

 

 

 



Embedded Systems - Overview 

System 
A system is an arrangement in which all its unit assemble work together according to a set of 

rules. It can also be defined as a way of working, organizing or doing one or many tasks 

according to a fixed plan. For example, a watch is a time displaying system. Its components 

follow a set of rules to show time. If one of its parts fails, the watch will stop working. So 

we can say, in a system, all its subcomponents depend on each other. 

Embedded System 
As its name suggests, Embedded means something that is attached to another thing. An 

embedded system can be thought of as a computer hardware system having software 

embedded in it. An embedded system can be an independent system or it can be a part of a 

large system. An embedded system is a microcontroller or microprocessor-based system 

which is designed to perform a specific task. For example, a fire alarm is an embedded 

system; it will sense only smoke. 

An embedded system has three components − 

 It has hardware. 

 It has application software. 

 It has Real Time Operating system (RTOS) that supervises the application software 

and provide mechanism to let the processor run a process as per scheduling by 

following a plan to control the latencies. RTOS defines the way the system works. It 

sets the rules during the execution of application program. A small scale embedded 

system may not have RTOS. 

So we can define an embedded system as a Microcontroller based, software driven, reliable, 

real-time control system. 

Characteristics of an Embedded System 
 Single-functioned − An embedded system usually performs a specialized operation 

and does the same repeatedly. For example: A pager always functions as a pager. 

 Tightly constrained − All computing systems have constraints on design metrics, 

but those on an embedded system can be especially tight. Design metrics is a 

measure of an implementation's features such as its cost, size, power, and 

performance. It must be of a size to fit on a single chip, must perform fast enough to 

process data in real time and consume minimum power to extend battery life. 

 Reactive and Real time − Many embedded systems must continually react to 

changes in the system's environment and must compute certain results in real time 

without any delay. Consider an example of a car cruise controller; it continually 

monitors and reacts to speed and brake sensors. It must compute acceleration or de-

accelerations repeatedly within a limited time; a delayed computation can result in 

failure to control of the car. 

 Microprocessors based − It must be microprocessor or microcontroller based. 

 Memory − It must have a memory, as its software usually embeds in ROM. It does 

not need any secondary memories in the computer. 

 Connected − It must have connected peripherals to connect input and output devices. 



 HW-SW systems − Software is used for more features and flexibility. Hardware is 

used for performance and security. 

Advantages 

 Easily Customizable 

 Low power consumption 

 Low cost 

 Enhanced performance 

Disadvantages 

 High development effort 

 Larger time to market 

 

 

Basic Structure of an Embedded System 
The following illustration shows the basic structure of an embedded system − 

 
 Sensor − It measures the physical quantity and converts it to an electrical signal 

which can be read by an observer or by any electronic instrument like an A2D 

converter. A sensor stores the measured quantity to the memory. 

 A-D Converter − An analog-to-digital converter converts the analog signal sent by 

the sensor into a digital signal. 

 Processor & ASICs − Processors process the data to measure the output and store it 

to the memory. 

 D-A Converter − A digital-to-analog converter converts the digital data fed by the 

processor to analog data 

 Actuator − An actuator compares the output given by the D-A Converter to the 

actual (expected) output stored in it and stores the approved output. 

Characteristics & Quality Attributes of Embedded Systems 
Application and Domain specific 

An embedded system is designed for a specific purpose only. It will not do any other task. 



Ex. A washing machine can only wash, it cannot cook 

Certain embedded systems are specific to a domain: ex. A hearing aid is an application that 

belongs to the domain of signal processing. 

Reactive and Real time 

Certain Embedded systems are designed to react to the events that occur in the nearby 

environment. These events also occur real-time. 

Ex. An air conditioner adjusts its mechanical parts as soon as it gets a signal from its 

sensors to increase or decrease the temperature when the user operates it using a 

remote control. 

An embedded system uses Sensors to take inputs and has actuators to bring out the required 

functionality. 

 Operation in harsh environment 

 Certain embedded systems are designed to operate in harsh environments like very high 

temperature of the deserts or very low temperature of the mountains or extreme rains. 

These embedded systems have to be capable of sustaining the environmental conditions it is 

designed to operate in. 

Distributed 

Certain embedded systems are part of a larger system and thus form components of a 

distributed system. 

These components are independent of each other but have to work together for the larger 

system to function properly. 

Ex. A car has many embedded systems controlled to its dash board. Each one is an 

independent embedded system yet the entire car can be said to function properly only 

if all the systems work together. 

Small size and weight 

An embedded system that is compact in size and has light weight will be desirable or more 

popular than one that is bulky and heavy. 

Ex. Currently available cell phones. The cell phones that have the maximum features 

are popular but also their size and weight is an important characteristic. 

For convenience users prefer mobile phones than phablets. (phone + tablet pc)  

Power concerns 

It is desirable that the power utilization and heat dissipation of any embedded system be low. 

If more heat is dissipated then additional units like heat sinks or cooling fans need to be 

added to the circuit. 

If more power is required then a battery of higher power or more batteries need to be 

accommodated in the embedded system. 

QUALITY ATTRIBUTES OF EMBEDDED SYSTEM 

These are the attributes that together form the deciding factor about the quality of an 

embedded system. 

There are two types of quality attributes are 

  

Operational Quality Attributes. 

These are attributes related to operation or functioning of an embedded system. The 

way an embedded system operates affects its overall quality. 



  

Non-Operational Quality Attributes 

These are attributes not related to operation or functioning of an embedded system. 

The way an embedded system operates affects its overall quality. 

These are the attributes that are associated with the embedded system before it can be put in 

operation. 

Operational Attributes 

Response 

Response is a measure of quickness of the system. 

It gives you an idea about how fast your system is tracking the input variables. 

Most of the embedded system demand fast response which should be real-time. 

Throughput 

Throughput deals with the efficiency of system. 

It can be defined as rate of production or process of a defined process over a stated 

period of time. 

In case of card reader like the ones used in buses, throughput means how much 

transaction the reader can perform in a minute or hour or day. 

Reliability 

Reliability is a measure of how much percentage you rely upon the proper functioning 

of the system. 

Mean Time between failures and Mean Time To Repair are terms used in defining 

system reliability. 

Mean Time between failures can be defined as the average time the system is 

functioning before a failure occurs. 

  

Mean time to repair can be defined as the average time the system has spent in 

repairs. 

Maintainability 

Maintainability deals with support and maintenance to the end user or a client in 

case of technical issues and product failures or on the basis of a routine system 

check-up 

It can be classified into two types 

Scheduled or Periodic Maintenance 

This is the maintenance that is required regularly after a periodic time interval. 

Example: 

Periodic Cleaning of Air Conditioners 

Refilling of printer cartridges. 

 Maintenance to unexpected failure 

This involves the maintenance due to a sudden breakdown in the functioning of the 

system. 

Example: 

Air conditioner not powering on 

Printer not taking paper in spite of a full paper stack 

Security 



Confidentiality, Integrity and Availability are three corner stones of information security. 

Confidentiality deals with protection data from unauthorized disclosure. 

Integrity gives protection from unauthorized modification. 

Availability gives protection from unauthorized user 

Certain Embedded systems have to make sure they conform to the security measures. 

Ex. An Electronic Safety Deposit Locker can be used only with a pin number like a 

password. 

Safety 

  

Safety deals with the possible damage that can happen to the operating person and 

environment due to the breakdown of an embedded system or due to the emission of 

hazardous materials from the embedded products. 

A safety analysis is a must in product engineering to evaluate the anticipated damage 

and determine the best course of action to bring down the consequence of damages to 

an acceptable level. 

  

Non Operational Attributes 

  

Testability and Debug-ability 

  

 It deals with how easily one can test his/her design, application and by which mean 

he/she can test it. 

 In hardware testing the peripherals and total hardware function in designed manner 

  Firmware testing is functioning in expected way 

 Debug-ability is means of debugging the product as such for figuring out the probable 

sources that create unexpected behavior in the total system 

  

Evolvability 

  For embedded system, the qualitative attribute “Evolvability” refer to ease with which the 

embedded product can be modified to take advantage of new firmware or hardware 

technology. 

Portability 

  Portability is measured of “system Independence”. 

 An embedded product can be called portable if it is capable of performing its operation 

as it is intended to do in various 

environments irrespective of different processor and or controller and embedded operating 

systems.  

Time to prototype and market 

Time to Market is the time elapsed between the conceptualization of a product and time at 

which the product is ready for selling or use 

 Product prototyping help in reducing time to market. Prototyping is an informal kind of rapid 

product development in which important feature of the under consider are develop. 



In order to shorten the time to prototype, make use of all possible option like use of reuse, off 

the self-component etc. 

Per unit and total cost 

Cost is an important factor which needs to be carefully monitored. Proper market study and 

cost benefit analysis should be carried out before taking decision on the per unit cost of the 

embedded product.  

When the product is introduced in the market, for the initial period the sales and revenue will 

be low 

There won’t be much competition when the product sales and revenue increase. 

During the maturing phase, the growth will be steady and revenue reaches highest point and 

at retirement time there will be a drop-in sales volume. 

 

Embedded Systems - Processors 

Processor is the heart of an embedded system. It is the basic unit that takes inputs and 

produces an output after processing the data. For an embedded system designer, it is 

necessary to have the knowledge of both microprocessors and microcontrollers. 

Processors in a System 

A processor has two essential units − 

Program Flow Control Unit (CU) 

Execution Unit (EU) 

The CU includes a fetch unit for fetching instructions from the memory. The EU has circuits 

that implement the instructions pertaining to data transfer operation and data conversion from 

one form to another. 

The EU includes the Arithmetic and Logical Unit (ALU) and also the circuits that execute 

instructions for a program control task such as interrupt, or jump to another set of 

instructions. 

A processor runs the cycles of fetch and executes the instructions in the same sequence as 

they are fetched from memory. 

Types of Processors 

Processors can be of the following categories − 

General Purpose Processor (GPP) 

Microprocessor 

Microcontroller 

Embedded Processor 

Digital Signal Processor 

Media Processor 

Application Specific System Processor (ASSP) 

Application Specific Instruction Processors (ASIPs) 

GPP core(s) or ASIP core(s) on either an Application Specific Integrated Circuit 

(ASIC) or a Very Large Scale Integration (VLSI) circuit. 

Microprocessor 

A microprocessor is a single VLSI chip having a CPU. In addition, it may also have other 

units such as coaches, floating point processing arithmetic unit, and pipelining units that help 

in faster processing of instructions. 



Earlier generation microprocessors’ fetch-and-execute cycle was guided by a clock frequency 

of order of ~1 MHz. Processors now operate at a clock frequency of 2GHz 

 
Microcontroller 

A microcontroller is a single-chip VLSI unit (also called microcomputer) which, although 

having limited computational capabilities, possesses enhanced input/output capability and a 

number of on-chip functional units. 

CPU RAM ROM 

I/O Port Timer Serial COM Port 

Microcontrollers are particularly used in embedded systems for real-time control applications 

with on-chip program memory and devices. 

Microprocessor vs Microcontroller 

Let us now take a look at the most notable differences between a microprocessor and a 

microcontroller. 

Microprocessor Microcontroller 

Microprocessors are multitasking in nature. 

Can perform multiple tasks at a time. For 

example, on computer we can play music 

while writing text in text editor. 

Single task oriented. For example, a 

washing machine is designed for washing 

clothes only. 

RAM, ROM, I/O Ports, and Timers can be 

added externally and can vary in numbers. 

RAM, ROM, I/O Ports, and Timers cannot 

be added externally. These components are 

to be embedded together on a chip and are 

fixed in numbers. 

Designers can decide the number of memory 

or I/O ports needed. 

Fixed number for memory or I/O makes a 

microcontroller ideal for a limited but 

specific task. 

External support of external memory and I/O 

ports makes a microprocessor-based system 

heavier and costlier. 

Microcontrollers are lightweight and 

cheaper than a microprocessor. 

External devices require more space and their 

power consumption is higher. 

A microcontroller-based system consumes 

less power and takes less space. 

 



 

 

Embedded Systems - Architecture Types 

The 8051 microcontrollers work with 8-bit data bus. So they can support external data 

memory up to 64K and external program memory of 64k at best. Collectively, 8051 

microcontrollers can address 128k of external memory. 

When data and code lie in different memory blocks, then the architecture is referred 

as Harvard architecture. In case data and code lie in the same memory block, then the 

architecture is referred as Von Neumann architecture. 

Von Neumann Architecture 

The Von Neumann architecture was first proposed by a computer scientist John von 

Neumann. In this architecture, one data path or bus exists for both instruction and data. As a 

result, the CPU does one operation at a time. It either fetches an instruction from memory, or 

performs read/write operation on data. So an instruction fetch and a data operation cannot 

occur simultaneously, sharing a common bus. 

 

Von-Neumann architecture supports simple hardware. It allows the use of a single, sequential 

memory. Today's processing speeds vastly outpace memory access times, and we employ a 

very fast but small amount of memory (cache) local to the processor. 

Harvard Architecture 

The Harvard architecture offers separate storage and signal buses for instructions and data. 

This architecture has data storage entirely contained within the CPU, and there is no access to 

the instruction storage as data. Computers have separate memory areas for program 

instructions and data using internal data buses, allowing simultaneous access to both 

instructions and data. 

Programs needed to be loaded by an operator; the processor could not boot itself. In a 

Harvard architecture, there is no need to make the two memories share properties. 



 
 

Von-Neumann Architecture vs Harvard Architecture 

The following points distinguish the Von Neumann Architecture from the Harvard 

Architecture. 

Von-Neumann Architecture Harvard Architecture 

Single memory to be shared by both code and data. Separate memories for code and data. 

Processor needs to fetch code in a separate clock 

cycle and data in another clock cycle. So it 

requires two clock cycles. 

Single clock cycle is sufficient, as 

separate buses are used to access 

code and data. 

Higher speed, thus less time consuming. Slower in speed, thus more time-

consuming. 

Simple in design. Complex in design. 

CISC and RISC 

CISC is a Complex Instruction Set Computer. It is a computer that can address a large 

number of instructions. 

In the early 1980s, computer designers recommended that computers should use fewer 

instructions with simple constructs so that they can be executed much faster within the CPU 

without having to use memory. Such computers are classified as Reduced Instruction Set 

Computer or RISC. 

CISC vs RISC 

The following points differentiate a CISC from a RISC − 

CISC RISC 

Larger set of instructions. Easy to program Smaller set of Instructions. Difficult to 

program. 

Simpler design of compiler, considering 

larger set of instructions. 

Complex design of compiler. 



Many addressing modes causing complex 

instruction formats. 

Few addressing modes, fix instruction 

format. 

Instruction length is variable. Instruction length varies. 

Higher clock cycles per second. Low clock cycle per second. 

Emphasis is on hardware. Emphasis is on software. 

Control unit implements large instruction 

set using micro-program unit. 

Each instruction is to be executed by 

hardware. 

Slower execution, as instructions are to be 

read from memory and decoded by the 

decoder unit. 

Faster execution, as each instruction is to be 

executed by hardware. 

Pipelining is not possible. Pipelining of instructions is possible, 

considering single clock cycle. 

Embedded Systems - Tools & Peripherals 

Compilers and Assemblers 

Compiler 

A compiler is a computer program (or a set of programs) that transforms the source code 

written in a programming language (the source language) into another computer language 

(normally binary format). The most common reason for conversion is to create an executable 

program. The name "compiler" is primarily used for programs that translate the source code 

from a highlevel programming language to a low-level language (e.g., assembly language or 

machine code). 

Cross-Compiler 

If the compiled program can run on a computer having different CPU or operating system 

than the computer on which the compiler compiled the program, then that compiler is known 

as a cross-compiler. 

Decompiler 

A program that can translate a program from a low-level language to a high-level language is 

called a decompiler. 

Language Converter 

A program that translates programs written in different high-level languages is normally 

called a language translator, source to source translator, or language converter. 

A compiler is likely to perform the following operations − 

Pre-processing 

Parsing 

Semantic Analysis (Syntax-directed translation) 

Code generation 

Code optimization 

Assemblers 



An assembler is a program that takes basic computer instructions (called as assembly 

language) and converts them into a pattern of bits that the computer's processor can use to 

perform its basic operations. An assembler creates object code by translating assembly 

instruction mnemonics into opcodes, resolving symbolic names to memory locations. 

Assembly language uses a mnemonic to represent each low-level machine operation 

(opcode). 

 

Debugging Tools in an Embedded System 

Debugging is a methodical process to find and reduce the number of bugs in a computer 

program or a piece of electronic hardware, so that it works as expected. Debugging is 

difficult when subsystems are tightly coupled, because a small change in one subsystem can 

create bugs in another. The debugging tools used in embedded systems differ greatly in terms 

of their development time and debugging features. We will discuss here the following 

debugging tools − 

Simulators 

Microcontroller starter kits 

Emulator 

 

Simulators 

Code is tested for the MCU / system by simulating it on the host computer used for code 

development. Simulators try to model the behavior of the complete microcontroller in 

software. 

Functions of Simulators 

A simulator performs the following functions − 

Defines the processor or processing device family as well as its various versions for the target 

system. 

Monitors the detailed information of a source code part with labels and symbolic arguments 

as the execution goes on for each single step. 

Provides the status of RAM and simulated ports of the target system for each single step 

execution. 

Monitors system response and determines throughput. 

Provides trace of the output of contents of program counter versus the processor registers. 

Provides the detailed meaning of the present command. 

Monitors the detailed information of the simulator commands as these are entered from the 

keyboard or selected from the menu. 

Supports the conditions (up to 8 or 16 or 32 conditions) and unconditional breakpoints. 

Provides breakpoints and the trace which are together the important testing and debugging 

tool. 

Facilitates synchronizing the internal peripherals and delays. 

Microcontroller Starter Kit 

A microcontroller starter kit consists of − 

Hardware board (Evaluation board) 

In-system programmer 

Some software tools like compiler, assembler, linker, etc. 



Sometimes, an IDE and code size limited evaluation version of a compiler. 

A big advantage of these kits over simulators is that they work in real-time and thus allow for 

easy input/output functionality verification. Starter kits, however, are completely sufficient 

and the cheapest option to develop simple microcontroller projects. 

Emulators 

An emulator is a hardware kit or a software program or can be both which emulates the 

functions of one computer system (the guest) in another computer system (the host), different 

from the first one, so that the emulated behavior closely resembles the behavior of the real 

system (the guest). 

Emulation refers to the ability of a computer program in an electronic device to emulate 

(imitate) another program or device. Emulation focuses on recreating an original computer 

environment. Emulators have the ability to maintain a closer connection to the authenticity of 

the digital object. An emulator helps the user to work on any kind of application or operating 

system on a platform in a similar way as the software runs as in its original environment. 

 

Peripheral Devices in Embedded Systems 

Embedded systems communicate with the outside world via their peripherals, such as 

following &mins; 

Serial Communication Interfaces (SCI) like RS-232, RS-422, RS-485, etc. 

Synchronous Serial Communication Interface like I2C, SPI, SSC, and ESSI 

Universal Serial Bus (USB) 

Multi Media Cards (SD Cards, Compact Flash, etc.) 

Networks like Ethernet, LonWorks, etc. 

Fieldbuses like CAN-Bus, LIN-Bus, PROFIBUS, etc. 

imers like PLL(s), Capture/Compare and Time Processing Units. 

Discrete IO aka General Purpose Input/Output (GPIO) 

Analog to Digital/Digital to Analog (ADC/DAC) 

Debugging like JTAG, ISP, ICSP, BDM Port, BITP, and DP9 ports 
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